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Empirical Bayes Methods for Smoothing
Data and for Simultaneous Estimation of
Many Parameters
by Takemi Yanagimoto* and Nobuhisa Kashiwagi*

A recent successful development is found in a series of innovative, new statistical methods for smoothing
data that are based on the empirical Bayes method. This paper emphasizes their practical usefulness in
medical sciences and their theoretically close relationship with the problem of simultaneous estimation
of parameters, depending on strata. The paper also presents two examples of analyzing epidemiological
data obtained in Japan using the smoothing methods to illustrate their favorable performance.

Introduction
One of the most promising and rapidly developing

branches of statistics is the use of smoothing methods
that are based on the empirical Bayes approach. These
methods are known in econometrics and engineering,
but in medical sciences their use appears sparse in spite
of their potential. The smoothing methods were devel-
oped separately from the standard statistical theory.
For example, the moving average method was intro-
duced in a heuristic way, though it is intuitively ap-
pealing. The aim of the paper is to review recent de-
velopments of smoothing methods in relation to the
standard statistical method. Our emphasis will be placed
on their usefulness and the need for further research
on extending the methods so as to be useful in analyzing
the epidemiological data.
The smoothing problem is regarded as the simulta-

neous estimation in a model with many strata under the
assumptions that the strata are linearly ordered and the
neighboring strata have density functions close to each
other. This view permits us to formulate the model by
describing the smoothness in terms of the prior distri-
bution on the hyperpopulation and to embed the smooth-
ing methods in the standard theory. Then we can con-
struct estimators and test statistics by applying the
likelihood inference such as the maximum likelihood es-
timator and the likelihood ratio test.
We begin with the formulation ofmethods in a general

form, followed by the explicit description of the stan-
dard methods including the Stein problem and useful
smoothing methods. Our formulation is a direct exten-
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sion of well-known ones,but it is not seen in the liter-
ature. Historical notes and relations with other proce-
dures are added. The review of smoothing methods
extend to more advanced ones. Finally, our experiences
in analyzing epidemiological data sets in terms of the
smoothing methods are given.

Methods in a General Form
Consider a model with K strata having the density

(probability) function of the kth stratum, p(x; 0, P k), k
= 1,... ,K where the parameter Rk depends on the
stratum and 0 is common through the stratum. Let Xki,
i = 1, ... nk be a sample of size nk from the kth stratum.
Write p. = (Rl, .. . pa), and Xk = (Xkl,... Xk,,k)'. Then
our problems will be the following: a) estimate the pa-
rameter pu, b) estimate the parameter 0, and c) test for
the null hypothesis ,u E Mo.
Keep in mind that our interest is placed on all the

parameters in a model. We assume ,u is an outcome from
a hyperpopulation having the density function g(t.;8), 8
E D, which is a prior distribution in the Bayesian con-
text. The parameter spaceD has a limiting point 80 such
that g(p.;B) tends to a degenerated measure; write it
g(p.;50) for convenience. The null hypothesis Mo in the
test problem above will be expressed as 8 = 80.
The overall likelihood is written as

K

L(x; p, 0, 8) = { E H P(xki; 0, 9k)}g(; 8),
k=1

with x = (xl', . . ., XK')'. Integrating the overall like-
lihood with respect to p., we obtain the marginal like-
lihood,

ML(x; 0, 8) = f L(x; 0, p., 8) dR
M



YANAGIMOTO AND KASHIWAGI

withM being the support ofg(,u;8). Then our procedures
are constructed as follows: a) estimate 0, and 8 by max-
imizing the marginal likelihood, and b) estimate p by
maximizing the (profile) overall likelihood L(x; ,u, 0, 5).
The rejection region of the test for ,u e MO with the level
ot is T = 2 log{ML(x; 0, 9)/ML(x; 0)} > ca, where 0
maximizes ML(x; 0, 80).
Some extensions look straightforward. The difficul-

ties could arise in calculating the marginal likelihood,
in numerical maximization of the likelihood, and also in
obtaining the critical value ca. The use of the conjugate
prior distribution, if acceptable, sharply reduces com-
putational load.

Applicable Models
Selecting density functions p(x; 0, ,u) and g(,u; 8) suit-

ably, we can give a variety of methods.

Example 1 (Stein Problem)
Let Xk be a sample of size 1 from a normal population

N(ILk, 1) (1). Suppose pt is a sample vector of size K
from a normal hyperpopulation N(0,8). In this example
the common parameter 0 does not appear, and the value
80 is 0. Then it follows that the estimate Ik = [11x112 -
K] XkIIIXII2 with [z]+ = max(z,O). The test statistic T
takes the value 0 for 11XI12 < K and IIXI12 - K log (11x112/
K) - K otherwise. Therefore the rejection region of
the test for R, = ... = ,UK = 0 with a standard level
a say 0.05, is _xa2> ).

Example 2 (One-Way Design)
Let Xk be a sample vector of size n from a normal

population N(Rk, Cr). Suppose A is a sample vector of
size K from a normal hyperpopulation N(T,v). Then or2
and (T,v) correspond to 0 and 8, respectively. Some al-
gebras yield fk = x + [R -l]+(xk-)/R where x and
Xk are sample means of x and Xk, and R = SVS2
with S2 and S2, being the strata and within vari-
ances. The rejection region of the test for the homo-
geneity of ,uk'S with a standard level is expressed as
R > FK 1,(n-1)K;1-a'Y which is equivalent with the con-
ventional F test. The estimator c2 is given by S2 if S2,
<bS and {(K- 1)Sb + (n - 1)KSw}/(nK- 1) otherwise.
The two simple examples just discussed show that

the obtained estimators and tests are appealing. The
derivation of methods based on other models is easily
done in a parallel way, especially when the conjugate
prior distribution can be assumed. However more useful
methods pertain to smoothing data. We can find a series
of attractive, useful methods for smoothing data, and
our attention will later focus on the smoothing problem.

Example 3 (Smoothing Based on
Differences of the Second Order)

In the standard smoothing problem the strata are
linearly ordered in k. Let Xk be a sample of size 1 from

a normal population N(p1k,u2). To describe our confi-
dence of gradual change of 1tk, we assume R is an out-
come from a multivariate normal hyperpopulation N(ael
+ Pe2, SD-), where el and e2 are the normalized or-
thogonal vectors from (1,. . . ,1)' and (1,2, . . . ,n)', and
D- is the Moore-Penrose g-inverse matrix of D such
that x'Dx = (Xk+2 - 2411 + Xk)2. Therefore it holds
that De1 = De2 = 0. The null hypothesis Mo = {>I1>
= ae1 + be2} is expressed as 80 = 0, consequently, yo
= 0. It follows after the partial likelihood treatment
that the marginal likelihood is given by
log ML(y) = (K - 2) log (x'(I - (I + -yD)f-)x)

- (K - 2) log y + log I + -yD 1.

with -y = u2/8 and I being the Kx K identity matrix.
Let i be the estimator maximizing ML(-y). Then the
estimators are ,u = (I + yD)_'x, a2 = x'(I-(I +
-yD)1l)x/(n-2). The rejection region of the test for line-
arity of ,u is given by T = 2 log ML( A)/ML(oo) > ca. The
critical value c0, depends on K and is given using the
simulation study by Yanagimoto and Yanagimoto (2).
The extension of the smoothing problem based on

differences of the general dth order is straightforward
except for obtaining ca. The simulation studies show
that critical values for a = 0.05 are approximated by
a(d)(K + d + 1)/K for d = 1, 2, 3 and 4, where a(l)
= 2.0, a(2) = 1.85, a(3) = 1.75 and a(4) = 1.7.

Historical Reviews
As far as we know, the empirical Bayesian approach

to smoothing data was started by Whittaker (3) and
Whittaker and Robinson (4), where the word "gradu-
ation" was used in place of"smoothing." Shiller (5) posed
the use ofthe smoothness prior distribution. These gave
mathematically elegant formulations of the penalized
least square method. However, in these papers the es-
timation of the ratio of parameter y = el/5 was not
given explicitly. In the Bayesian context the prior dis-
tribution is assumed to be known, but the assumption
looks too restrictive in practice. Wahba and her asso-
ciates (6,7) developed mathematical aspects of the
smoothing problem and recommended the use of the
generalized cross validation. The conceptual progress
of likelihood inference in the Bayesian (including em-
pirical Bayesian) model is attributed to Good (8). Akaike
(9) advocated the use of type II likelihood, that is, the
marginal likelihood. He also extended the smoothing
problem so as to cover the seasonal adjustment.
The empirical Bayesian formulation described here is

associated with various other statistical methods. Hen-
derson (10) discussed the estimation problem ofthe com-
ponent effect in random effect modeling. The procedure
previously described provides an explicit one. A formal
application of the EM algorithm (11) yields the same
estimate of the parameter y = a2/8. The Kalman fl-
tering (also smoothing) is computationally efficient (12),
though it is not easy to identify the distribution of the
initial state. The practical importance of a test for hom-
ogeneity was stressed by Yanagimoto and Yanagimoto
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(2). Morris (13) recommended a nomenclature, the par-
ametric empirical Bayes method. However, it seems to
the authors that a rather general term presented by
Cassella (14) is preferable.
The smoothing model has a wide range of extensions

and modifications. Later we review the seasonal ad-
justment model and the smoothing model in the two-
dimensional space. These two models look promising in
analyzing epidemiological data. Other applicable models
will be found in non-Gaussian modeling. In the simul-
taneous estimation of many parameters as in Examples
1 and 2 the conjugate prior distribution is useful. How-
ever it is tough to develop the conjugate prior distri-
bution in the smoothing except for the normal case,
since there is no flexible, tractable, multivariate non-
normal distribution (15). Recent researchers on non-
Gaussian modeling are succeeding in innovating the
analysis in this area. [For example, see West, Harrison,
and Migon (16) and Kitagawa (17).] An attempt to apply
the model to data for asthma attack is seen in a report
by Kamakura and Yanagimoto (18).

Further Smoothing Methods
An advantage of the empirical Bayes smoothing

method is its versatility. Actual data often has their
own characteristics usable for analysis. In turn, our
purpose for analyzing the data is often associated with
the characteristics, for example, monthly data consist-
ing ofthe incidences of diseases. (An epidemiologist may
suspect a significance of the seasonal effect and hope to
obtain the estimated trend.) Thus we can recommend
formulating the potential seasonal effect in terms of a
suitable prior distribution. Such advanced methods are
still under investigation.

Example 4 (Seasonal Adjustment)
The assumptions in the general smoothing method in

Example 3 are expressed as Xk - lk - N(O, cr2)1 Ilk+2
- 2P1k+1 + FLk- N(O,8), k = 1,..., K-2, e1'p = a
and %2'1p = 1. Consider a seasonal adjustment model
of monthly data. The existence of seasonal effects
means relative closeness of P k and 1k + 12. Obviously this
requirement is not orthogonal to that of the smoothness
of the trend, consequently the problem becomes much
more complicated. An implementation of the seasonal
adjustment is realized by assuming Pk = Tk + Sk,
where

Sk - Sk+12 N(O, Tj),
Sk + ... + Sk+11 N(O, T2)

Sk 1k

k = 1,..., K-12
k = 1,... K-11
k = 1,..., 11,

and the requirements to Tk are the same as those in Pk

shown in Example 3. Note that we add 13 hyperpara-
meters to the previous model. Since all the distributions
appearing in this model are hormal, there is no need for
numerical integration for calculating the marginal like-
lihood. Numerical optimization is, however, still elab-

orate. This model was originally developed by Akaike
(9).
The seasonal adjustment method is widely employed

in econometrics and is known as a typical problem hav-
ing a difficulty in identifiability. Various methods such
as X-11 have been proposed. We again emphasize that
the above approach is based on clear analytical as-
sumptions and procedures for inference of parameters
contained in the model. These advantages are mostly
desirable in natural sciences.

Example 5 (Smoothing of Spatial Data)
In this example we let Pkh be the variate at the (k,

h)th site of a two-dimensional rectangular lattice. Whit-
tle (19) proposed a simultaneous autoregressive model:

Fkh = E akhijpLij + Ekh k = 1,... , K,
(ij)X(k,h)

h = 1,...Hi
and applied a model of the form Xkh = 1kh + '9kh to
data for the yield of oranges obtained from uniformity
trials. Here, Ekh and '9kh denote a white noise, respec-
tively. Besag (20) gave an errors-in-variables formula-
tion of a conditional autoregressive model:

Xkh = Pkh + Tlkh

E(Rkh all other values) = I akhijRij
(ij): (k, h)

var(Rkh all other values) = akh

for any k = 1,. .. ,K,h = 1,...

and applied it to data for the yield of wheat. The un-
known parameters in both models are estimated using
the maximum likelihood method. Kashiwagi (21) gave
an empirical Bayesian formulation of a smoothing
method for spatial data; he pointed out that the likeli-
hood function, defined in both the simultaneous and con-
ditional autoregressive models, is equivalent to the mar-
ginal likelihood function in the empirical Bayes method.
In the context of the smoothing spline, Wahba (22) stud-
ied the use of thin plate splines for smoothing noisy
multidimensional data.

It seems that this method is applicable to analyzing
meshed geographical data for mobility and mortality.
It enables us to give all the smoothed estimates of Pkh
using our knowledge of gradual changes. Descriptive
methods such as the grid square method (23) are at-
tributable to skilled subjective judgments.

Applications
Two examples of applying the smoothing methods to

actual data obtained in Japan follow.
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Cancer Mortality in Japan
Stomach cancer is still the largest cause of cancer

death. We analyzed yearly data cited from Japanese
vital statistics for the crude number of cancer death for
males during the time period between 1965 and to 1986.
Figure 1 shows the result in the case of stomach cancer
in males. We observe that even in the crude number
base, the manual mortality has been decreasing in re-
cent years, though it is widely accepted that the ad-
justed mortality is decreasing. The fitness of the simple
linear regression is apparently bad. This is supported
by the fact that the (marginal) likelihood ratio test sta-
tistic T takes 11.34, which is much greater than 1.85 -

25/22. To compare it with an existing method, the same
data are also analyzed using the familiar statistical soft-
ware, S, which is given in Figure 2. The general trends
are similar, but the estimated line in Figure 2 looks
overfitted; ours appears to be more appealing. A clearer
difference between the two analyses is the fact that ours
is closely related with the simple linear regression. The
simple linear regression is powerful and often our pri-
mary choice.

SMON Patient Incidence
According to leading Japanese epidemiologists, sub-

acute myelo-optico neuropathy (SMON) is a tragic

0001 X
Cy

u> a
A0a

YEAR 1965 1970 1975 19.0 INS

Figure 3. Smoothing data for annual mortality of lung cancer in
males by the empirical Bayes method (solid line) and by the simple
linear regression (dotted line), both after logarithmic transfor-
mation. T = 18.03.
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FIGURE 4. Fitting the seasonal adjustment model to data for the monthly incidence of SMON cases (A) with estimated general trend (B) and
estimated seasonal factor (C).

a
a
in

1--
z

a

i cm

C;
a

a
1966.11 1967.11

FIGURE 5. Fitting the smoothing model to the data as with Figure 4.
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large:scale side effect of the drug, clioquinol. At that
time when the etiology of SMON was under study, it
was suspected that a relatively high incidence ofSMON
cases occurred in the summer. To illustrate the useful-
ness of the seasonal adjustment method, we analyzed
the data for the monthly incidence ofSMON cases cited
from Table 7.1 in the Research Report (24) between
November 1966 to August 1970. The estimated line with
the estimated trend and seasonal effects is given in Fig-
ure 4. The smoothing model disregarding the seasonal
effects is also fitted and is given in Figure 5. Both the
estimated lines appear to be acceptable. More precisely,
very short-term fluctuations are observed in the sea-
sonal adjustment method. On the other hand, the upper
and lower peaks cannot be interpreted well by the
smoothing method. The likelihood ratio test statistic
takes 50.32. Since the difference of numbers of a pa-
rameters in the models is 13, the test for the existence
of seasonal effect is obviously highly significant, though
we do not have explicit results on the critical value. The
estimated seasonal effect shows the gradual increase of
SMON from winter to summer and the highest peak
seen in September, followed by a sharp decrease.
The assumption of the Poisson distribution may be

more familiar than that of the normal distribution. In
this case we must apply the non-Gaussian theory, and
its actual implementation, including the use of computer
programs, requires further investigation.

The authors thank C. Kitagawa for his guidance in the non-Gaussian
approach. They also extend thanks to N. Nakajima and H. Matsuno
for their help in preparing Figures 1, 2, and 3.
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